INDIAN STATISTICAL INSTITUTE

Probability Theory II: B. Math (Hons.) I Semester II, Academic Year 2016-17 Backpaper Exam

Total Marks: 100 Duration: 3 hours

- Please write your roll number on top of your answer paper.
- Show all your works and write explanations when needed. If you are using a result stated and/or proved in class, please quote it correctly.
- You are NOT allowed to use class notes, books, homework solutions, list of theorems, formulas etc.
- 1. A continuous random vector (X,Y) has a joint probability density function given by

$$f_{X,Y}(x,y) = e^{-(x-y)}$$
 if $0 < y < 1$ and $x > y$.

- (a) (4+4=8 marks) Find marginal probability density functions of X and Y.
- (b) (2 marks) Are X and Y independent? Please justify your answer.
- (c) (5+5=10 marks) Calculate the conditional probability density functions of X given Y and Y given X.
- (d) (5+5=10 marks) Compute E(X|Y) and Var(Y|X).
- 2. (10 marks) Suppose U and V are two independent random variables with $U, V \sim Unif(0,1)$. Compute the probability density function of Z = U V.
- 3. Suppose that X_1, X_2, \ldots are independent and identically distributed random variables having characteristic function $\phi(t) = \exp\{-|t|^{1.8}\}, t \in \mathbb{R}$ (assume that this is a valid characteristic function).
 - (a) (5 marks) Express the cumulative distribution function of $S_n := X_1 + X_2 + \cdots + X_n$ $(n \ge 1)$ in terms of the cumulative distribution function of X_1 .
 - (b) (5 marks) Find the weak limit of $n^{-5/8}S_n$ as $n \to \infty$.
- 4. (6 marks) Let X_1, X_2, X_3, X_4 be i.i.d. standard normal random variables. For k = 1, 2, 3, define $Y_k = (\sum_{1}^{k} X_i kX_{k+1})/\sqrt{k(k+1)}$. Then show that Y_1, Y_2, Y_3 are also i.i.d. standard normal random variables.

[P. T. O]

- 5. State whether each of the following statements is true or false. If it is true, give a detailed proof. On the other hand, if it is false, produce a counter-example with full justification. If you both prove and disprove a statement, you will get a zero in that problem.
 - (a) (12 marks) $Z_n \stackrel{\mathbf{P}}{\to} Z$ if and only if $E(\min\{1, |Z_n Z|\}) \to 0$ as $n \to \infty$.
 - (b) (12 marks) If X_1 and X_2 are i.i.d. random variables following exponential distribution with parameter $\lambda = 1$, then $V := \frac{4X_1 + 3X_2}{X_1 + X_2}$ follows uniform distribution on the interval (3, 4).
- 6. (20 marks) Find all random variables X satisfying $E(X^2) < \infty$ and the following distributional equation: $X \stackrel{d}{=} (X+Y)/\sqrt{2}$ for any random variable Y independent of X such that $Y \stackrel{d}{=} X$.